If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2+28r+56=0
a = 1; b = 28; c = +56;
Δ = b2-4ac
Δ = 282-4·1·56
Δ = 560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{560}=\sqrt{16*35}=\sqrt{16}*\sqrt{35}=4\sqrt{35}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-4\sqrt{35}}{2*1}=\frac{-28-4\sqrt{35}}{2} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+4\sqrt{35}}{2*1}=\frac{-28+4\sqrt{35}}{2} $
| 5x+3=-5x-7 | | 29y^+23y=0 | | 5^3+17x^2+4x+14=0 | | b(2)+5b-35=3b | | 4b-17=3b | | -18u=6.84-17.4u | | -0.1x^2+0.4x+1.2=0 | | 1z+2=18 | | 15j-j=14 | | 15j+-j=14 | | 4x–3=3x-5 | | -6+5(-1-b=19 | | 51=7(-1-b)=19 | | 5p=450 | | 20+g+10g=9g-20 | | p-15p+10p=20 | | 10z+10=-14+14z | | 5r-3r-r=20 | | 7+9x=106 | | (x+1)(x+5)=x | | 8(8k-3)-5=38-3k | | 10x+6=5x-32 | | 12p-9p-p+3p+2p=14 | | b/13=-8 | | Y=-7/2x+12 | | 13c+2c+3c-13c=20 | | 4^3x=170 | | 52=k+28 | | 20s+13-15=19s-17 | | (2x)^2/(1-x)^2=3.6 | | 10p+4p+77=9 | | 7^(x+6)=49^x |